
Enter the name that you
want to use for this
Custom Namespace
Definition.

Enter a comma separated list
of Subscriptions that you will
want to issue on this
Namespace definition.
Typically this will be a root
topic with appropriate wildcard
definitions.

This option ‘Root Tag Folder’
will be created under the
‘MQTT Engine’ folder in
Ignition for all tags from this
Namespace definition.

Select JSON Payload to have
MQTT Engine parse any
JSON payload into the Ignition
tag structure.

TECHNICAL NOTE
Maple Model(s) Title TN5119

Advanced HMIs
Smart HMIs

P/N: 0907-5119
Rev. 00 Date: 05/01/2017

Using Ignition MQTT Engine with Maple Systems HMIs

Summary

Ignition MQTT Engine now supports the native JSON format that is used by Maple System HMIs to
publish HMI memory addresses using MQTT. This Tech Note assumes that the user already has the
Ignition platform installed along with the MQTT Engine and MQTT Distributor (or other MQTT Server
infrastructure). For instructions on how to setup MQTT publishing on a Maple Systems HMI, see the
<MQTT Set-up> tech note.

Setting up MQTT Engine

1. Configuring Ignition MQTT Engine for a custom Topic Namespace and JSON Payload

Open the Ignition Gateway “Configure” console and navigate to MQTT Engine Setting/Namespaces/Custom,
and click on “Create new Custom Namespace…”

2. Testing JSON Payloads

Once the custom Topic Namespace has been configured and saved, we can proceed to publishing some
actual messages using the MQTT sample project and see how the resulting JSON information is parsed
into the Ignition tag structure.

Open the Ignition Designer and then navigate to the All Providers/MQTT Engine folder in the tag browser.
Note that prior to publishing any messages on the newly defined Topic Namespace, the defined “Maple
HMI” folder does not exist.

Using the MQTT sample project we will publish an MQTT message. Then we will refresh the Ignition tag
browser and see the resulting data structure.

Topic: HMI/machineOne/stats

JSON Payload:

{
"d" : {

"Speed" : [0],
"TankLevel" : [4]

},
"ts" : "2016-04-14T13:10:33.629078"

}

3. Tag Creation Details

So what just happened when Ignition received the Maple Systems formatted MQTT message internal to
the Ignition tag structure? First we can take a look at the JSON object that was published by the Maple
Systems HMI device:

{
"d" : {

"Speed" : [0],
"TankLevel" : [4]

},
"ts" : "2016-04-14T13:10:33.629078"

}

The JSON standard is well defined at http://json.org. The published JSON message contains 2 upper level
elements, an object named “d” which we define as the object that contains the data points, and an
object named “ts” which we define as the combined date and time timestamp based on when the HMI
device published the message.

In this example, the “d” object contains 2 objects called “Speed”, and “TankLevel”. Note that because of
the brackets ([]) in the JSON format, both Speed and TankLevel contain an array of values. In this case
since there is only a single value in each array then these are arrays just containing a single element.
Speed is an array of 1 with a value of 0, while TankLevel is an array of 1 with a value of 4.

Now with the MQTT Engine Custom Namespace configuration, the Topic Namespace, and the JSON
message, MQTT Engine can now create a tag hierarchy that represents the message it just received. In
the Custom Namespace configuration we specified that all data received from the Maple Namespace be
placed into a folder named “Maple HMI”. So upon the reception of test message we just published from
MQTTfx, a folder was created in MQTT Engine/Maple HMI. From there, MQTT Engine actual values in
the received Topic Namespace to build out the rest of the folder structure. So in this example the
complete folder path constructed was:

MQTT Engine/Maple HMI/machineOne/stats

With the Topic Namespace folder structure complete, now MQTT Engine will start to build out the tag
structure that the JSON object represents. The first object, “d” is parsed into its representation which
results in the “d” folder with the Speed array and TankLevel array as subfolders. Finally the actual data
values of each of these arrays are populated into their respective array offsets. In this example this
results in d/speed/0 = 0 (with an Int4 data type), and d/TankLevel/0 = 4 (with an Int4 data type).

The second object in the JSON message is the “ts” object which is not an array as the resulting value is a
String data type.

http://json.org/

Published JSON object shown in the Ignition tag browser.

4. Scaling Floating Point Values

MQTT Engine will create Ignition tags from JSON using appropriate type conversion:

“value” : 1234 Ignition Int4

“value” : 1234.0Ignition Float8

“value” : “1234”Ignition String

“value” : true Ignition Boolean

In some applications the values being published from the Maple HMI may be integer values that actually
need to be scaled before displaying in an Ignition dashboard. For example, a “d” value array might
contain a value of 1234 that actually represents a floating point value of 12.34.

This root folder name was
configured in MQTT Engine. It is
optional.

These folders came directly from
the Topic Namespace in the
message.

{
 "d" : {
 "Speed" : [0],
 "TankLevel" : [4]
 },
 "ts" : "2016-04-14T13:10:33.629078"
}

This is the index value of the JSON
array.

Published JSON Object

Observe the value of 1234 in the Ignition tag browser:

If you add the Maple HMI/HMI/machineOne/stats/Speed/0 tag directly to the dashboard the resulting
display value will be 1,234. But if you want to scale this value, highlight the “Property Editor” in Ignition
Designer and select the “Value” property. By default the value being displayed will have a Binding Type
of “Tag”.

To scale the value being displayed, select the “Expression” binding. By default this will show the tag path
but now you can perform pretty much any mathematical operation you want to the value. In the
screenshot below, the “Speed/0” tag is being divided by 100.0 resulting in the display of the scaled
value.

